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Rezumatul tezei de doctorat-engleză

Stabilization of the Navier-Stokes
equations

Coordonator ştiinţific:
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Preface

The mathematical model which describes the evolution of a fluid is one of the most studied
by the researchers because of its major importance. The governing equations are the
well-known Navier-Stokes equations.

In the first chapter, we study the evolution of a fluid in a semi-infinte rectangel. Main
results obtained concerning the stabilization of the Poiseuille parabolic profile were ob-
tained by Krstic and his cowrokers in [3, 85, 54, 85, 27, 77, 64]. We obtain a stabilizing
feedback controller which acts only on the normal component of the velocity field, on the
upper wall. The stability is guaranteed without any a priori condition on the viscosity co-
effiecient. The controller is easily manageable from computational point of view since the
operators in its form satisfy Riccati algebraic equations associated to parabolic equations
on (0,1) with the same structure for diferent values of the Fourier modes.

The second chapter propose an nonlinear internal control for the Navier-Stokes equations
with slip-boundary conditions. Moreover, we show that this controller steers the initial data
into the space considting of stable modes, in finite time.

Finally, the last chaper study the problem in finding a feedback controller which stabi-
lizes, not only one steady-state solution, but a finite-set of steady-state solutions for the
Navier-Stokes equations, by using the allready known results obtained in [?]

The paper ends with an Apendix which contains a short introduction in the theoretical
results used during the presentation.
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Chapter 1

Stabilization of Navier-Stokes
equations in a channel

In this chapter, we study the mathematical model which describes a Newtonian incom-
pressible fluid evolving in a semi-infinte 2-D channel

(x, y) ∈ (−∞,+∞)× (0, 1),

and 3-D channel
(x, y, z) ∈ (−∞,+∞)× (0, 1)× (−∞,+∞),

respectively. We shall consider both cases, when there is no action of magnetic type
and the case when an external constant magnetic field acts transversal on the channel.
The equations which govern the dynamics are the Navier-Stokes equations, and the MHD
equations, a combination between the Navier-Stokes equations and Maxwell equations.

The both experimental and numerical analysis show that, for high values of Reynolds
number (that is, for low values of the viscosity coefficient) the fluid may develop chaotic and
turbulent movements. One of the principal mathematical tools used in order to atenuate
or even eliminate the turbulence is the stabilization of the Navier-Stokes equations. In this
chapter, we shall design a stabilizing feedback controller, which acts on the upper wall, on
the normal component of the velocity field or on the tangential one. The stability is achived
without any a priori assumptions on the Reynolds number. We shall use the method of
Fourier decomposition of the linearized system and reduction of the pressure, developed by
Barbu in [14], to obtain an inifinite parabolic system. The stabilization is achived at each
level, by using the decomposition method of the system in the stable and unstable part,
developed by Barbu and Triggiani in [10]. The feedback form of the stabilizing controller
is obtained via minimization of a quadratic functional cost associated to a linear parabolic
problem.

1.1 Normal feedback stabilization of periodic flows in

a two-dimensional channel

This section entirely contains the original results obtained by the author in [66].
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1.1.1 Presenting the problem

The 2-D Navier-Stokes equations in a periodic channel are given by

ut − ν∆u+ uux + vuy = px,

vt − ν∆v + uvx + vvy = py,

ux + vy = 0,

∀t ≥ 0, x ∈ R, y ∈ (0, 1),

u(t, x+ 2π, y) = u(t, x, y), v(t, x+ 2π, y) = v(t, x, y), p(t, x+ 2π, y) = p(t, x, y),

∀t ≥ 0, ∀x ∈ R, ∀y ∈ (0, 1),

u(t, x, 0) = u(t, x, 1) = 0, v(t, x, 0) = 0, v(t, x, 1) = Ψ(t, x), ∀t ≥ 0, ∀x ∈ R,
(1.1.1)

and initial data

u(0, x, y) = uo(x, y), v(0, x, y) = vo(x, y), ∀x ∈ R, ∀y ∈ (0, 1).

Here u = u(t, x, y) and v = v(t, x, y) are the tangential component, normal component
respectively, of the fluid; p = p(t, x, y) is the pressure and ν is the viscosity coefficient.

The equilibrium solution which will be stabilized is the parabolic Poiseuille profile, given
by

U e(y) = C(y2 − y), V e ≡ 0,

where C = − a
2ν

, a ∈ R+.
The linearization of (1.1.1) around the steady-state is given by

ut − ν∆u+ uxU
e + vU e

y = px,

vt − ν∆v + vxU
e = py,

ux + vy = 0,

u(t, x, 0) = u(t, x, 1) = 0, v(t, x, 0) = 0, v(t, x, 1) = Ψ(t, x),

u(t, x+ 2π, y) = u(t, x, y), v(t, x+ 2π, y) = v(t, x, y),

p(t, x+ 2π, y) = p(t, x, y), ∀t ≥ 0, x ∈ R, y ∈ (0, 1),

(1.1.2)

and initial data

u(0, x, y) = u0(x, y) := uo(x, y)− U e(y), v(0, x, y) = v0(x, y) := vo(x, y),

∀x ∈ R, y ∈ (0, 1).

In what follows we shall design a normal finite-dimensional feedback controller Ψ which
stabilizes the linearized equation (1.1.2)
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1.1.2 Preliminaries

The Fourier functional setting, in which we shall work, is given by the space L2
2π(Q), Q =

(0, 2π)× (0, 1), containig all the functions u ∈ L2
loc(R× (0, 1)), which are 2π−periodic with

respect to x. These functions are caracterized by their Fourier series

u(x, y) =
∑
k∈Z

uk(y)eikx, uk = u−k,∀k ∈ Z,

such that ∑
k∈Z

∫ 1

0

|uk(y)|2dy <∞.

The norm in L2
2π(Q) is

‖u‖L2
2π(Q) :=

(∑
k∈Z

2π‖uk‖2
L2(0,1)

) 1
2

.

WE shall denote by ‖ · ‖ in both spaces L2
2π(Q) and L2(0, 1).

We consider H to be the complexified space of L2(0, 1). We denote by ‖ · ‖ the norm in
H, and by < ·, · > the scalar product.

Returning to system (1.1.2) we rewrite it in terms of Fourier modes of the velocity field,
the pressure and the control, that is

u =
∑
k∈Z

uk(t, y)eikx, v =
∑
k∈Z

vk(t, y)eikx

and
p =

∑
k∈Z

pk(t, y)eikx, Ψ =
∑
k∈Z

ψk(t)e
ikx.

We obtain
(uk)t − νu′′k + (νk2 + ikU e)uk + (U e)′vk = ikpk a.p.t. ı̂n (0, 1),
(vk)t − νv′′k + (νk2 + ikU e)vk = p′k a.p.t. ı̂n (0, 1),
ikuk + v′k = 0 a.p.t. ı̂n (0, 1),
uk(0) = uk(1) = 0, vk(0) = 0, vk(1) = ψk,

(1.1.3)

and initial data u0
k, v

0
k, for all k ∈ Z. (We denote by ′ the partial derivative with respect to

y, i.e., ∂
∂y

.)
Next, the idea is to elimante the pressure from the equations in the next manner: we

derive (1.1.3)1 with respect to y and add the result to (1.1.3)2 multiplied by ik. Using also
the divergence free condition, we arrive at the next system, verified by vk

(−v′′k + k2vk)t + νv′′′′k − (2νk2 + ikU e)v′′k
+ k(νk3 + ik2U e + i(U e)′′)vk = 0, ∀t ≥ 0, ∀y ∈ (0, 1),

v′k(t, 0) = v′k(t, 1) = 0, vk(t, 0) = 0, vk(t, 1) = ψk(t), ∀t ≥ 0,

vk(0, y) = v0
k(y), y ∈ (0, 1).

(1.1.4)
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We introduce the operators

Lk : D(Lk) ⊂ H → H and Fk : D(Fk) ⊂ H → H,

defined as
Lkv := −v′′ + k2v, D(Lk) = H2(0, 1) ∩H1

0 (0, 1), (1.1.5)

Fkv := νv′′′′ − (2νk2 + ikU e)v′′ + k(νk3 + ik2U e + i(U e)′′)v, (1.1.6)

D(Fk) = H4(0, 1) ∩H2
0 (0, 1).

AS well, we introduce the next differential forms

Lkv := −v′′ + k2v,

şi
Fkv := νv′′′′ − (2νk2 + ikU e)v′′ + k(νk3 + ik2U e + i(U e)′′)v.

Then, system (1.1.4) can be written as

(Lk(vk − wk))t + (FkL
−1
k )Lk(vk − wk) = θkwk − (Lk(wk))t, (1.1.7)

where wk = wk(t, y) satisfies{
θkwk + Fkwk = 0, t ≥ 0, y ∈ (0, 1),
w′k(0) = w′k(1) = 0, wk = 0, wk(1) = ψk,

(1.1.8)

for some θk > 0, sufficiently large. This suggests to introducce the next operators

Ak : D(Ak) ⊂ H → H, for all k ∈ Z∗,

defined as
Ak := FkL

−1
k , D(Ak) =

{
v ∈ H : L−1

k v ∈ D(Fk)
}
, (1.1.9)

for which we have the next result, due to de Barbu [17].

Lema 1.1.1 For all k ∈ Z∗, operator −Ak generates a C0 analytic semigroup in H, and
for all λ ∈ ρ(−Ak), (λI + Ak)

−1 is compact. Besides, we have

σ(−Ak) ⊂ {λ ∈ C : <λ ≤ 0} , ∀|k| > S,

where

S =
1√
ν

(
1 +

a√
2ν

) 1
2

. (1.1.10)

A first consequence of this lemma is: for all |k| > S, the solution to the system (1.1.4),
with null control on the boundary, satisfies the next exponential decay

‖uk(t)‖2 + ‖vk(t)‖2 ≤ e−νS
2t
(
‖u0

k‖2 + ‖v0
k‖2
)
, ∀t ≥ 0, ∀|k| > S. (1.1.11)

Therefore, it remains to control system (1.1.4) for 0 < |k| ≤ S only.
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After some computations it tourns out that system (1.1.7) can be written equivalently
in the next form

d

dt
(L̃kvk(t)) + Ãk(L̃k(vk)(t)) = (θk + F̃k)(Dkψk(t)), t > 0. (1.1.12)

Here L̃k, F̃k and Ãk are the extensions to H of the operators Lk, Fk, Ak, respectively; and
Dk is the Dirichlet operator associated to θk + F̃k. Equation (1.1.12) is understood in the
next weak sense〈

d

dt
Lkvk(t), φ

〉
+ 〈Lkvk,A∗kφ〉 =

〈
ψk(t), ((θk + F̃k)Dk)

∗φ
〉
, ∀φ ∈ D(A∗k),

where the dual
((θk + F̃k)Dk)

∗ξ = νξ′′′(1), (1.1.13)

for all ξ ∈ H4(0, 1), ξ(0) = ξ(1) = 0, ξ′(0) = ξ′(1) = 0.

1.1.3 Further properties of the operators Ak and Dk

Appealing to Fredholm theory for compact operators, by Lemma 1.1.1, −Ak has a count-
able set of eigenvalues

{
λkj
}∞
j=1

; moreover, there is a finite number Nk of eigenvalues λkj

for which <λkj ≥ 0, the unstable eigenvalues. We denote by
{
φkj
}∞
j=1

and
{
φk∗j
}∞
j=1

the

eigenfunctions of −Ak and −A∗k, respectively.
We have a result of ”unique continuation” type for the eigenfunctions of the dual oper-

ator −A∗k.

Lema 1.1.2 Let λkj , an unstable eigenvalue for the dual −A∗k. Then, we can assume that

the corresponding eigenfunction φk∗j can be choosen such that <(φk∗j )′′′(1) > 0.

Also, we have the next continuity result

Proposition 1.1.1 For all 0 < |k| ≤ S, Dk is continuous form C to H.

1.1.4 Feedback stabilization for the equivalent system (1.1.12)

For simplicity, we shall omit the symbol ˜ and set

zk := Lkvk, Bk := (θk + F̃k)Dk. (1.1.14)

Equation (1.1.12) becomes{
d
dt
zk(t) + Akzk(t) = Bkψk(t), t > 0,

zk(0) = z0k,
(1.1.15)

where z0k = Lkv
0
k.

We denote by Xu
Nk

:= linspan
{
φkj
}Nk
j=1

and by Xs
Nk

:= linspan
{
φkj
}∞
j=Nk+1

. Then

H = Xu
Nk
⊕Xs

Nk
,
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as algebric summ. Introduce the projection PNk : H → Xu
Nk

, and its adjoint P ∗Nk , defined
as

PNk := − 1

2πi

∫
Γ

(λI + Ak)
−1dλ and P ∗Nk := − 1

2πi

∫
Γ

(λI + A∗k)
−1dλ.

Aslo, denote by

−Au
Nk

:= PNk(−Ak) and −As
Nk

:= (I − PNk)(−Ak), (1.1.16)

It follows immediately that −As
Nk

satisfies the next exponential decay on Xs
Nk

‖e−tA
s
Nk‖L(H,H) ≤ Cα0e

−α0t, ∀t ≥ 0, (1.1.17)

for some 0 < α0 < |<λNk+1|.
Next, we decompose system (1.1.15) as

zk = zNk + ζNk , where zNk := PNkzk and ζNk := (I − PNk)zk,

by applying the operators PNk and I − PNk to the system (1.1.15), we get

on Xu
Nk

:


d
dt
zNk + Au

Nk
zNk = PNk(Bkψk),

zNk(0) = PNkz0k,
(1.1.18)

on Xs
Nk

:


d
dt
ζNk + As

Nk
ζNk = (I − PNk)(Bkψk),

ζNk(0) = (I − PNk)z0k,
(1.1.19)

respectively.
Because of the relation (1.1.17), system (1.1.19) is stable. Therefore, it remains to

stabilize the finite-dimensional unstable system (1.1.18). We have

Lema 1.1.3 For all 0 < |k| ≤ S, there exist α1, Cα1 > 0 and a control ψk such that, once
inserted into the system (1.1.18), the corresponding solution zNk satisfies

‖zNk(t)‖ ≤ Cα1e
−α1t‖z0k‖, ∀t ≥ 0.

Besides, the control can be choosen of class C1, such that∣∣∣∣ ddtψk(t)
∣∣∣∣+ |ψk(t)| ≤ Cα1e

−α1t‖z0k‖, ∀t ≥ 0.

Using this result, we get

Theorem 1.1.1 For all 0 < |k| ≤ S, there exists a control ψk such that, once inserted into
the system (1.1.15), the corresponding solution zk and the control satisfies the exponential
decay ∣∣∣∣ ddtψk(t)

∣∣∣∣+ |ψk(t)| ≤ Cα1e
−α1t‖z0k‖, ‖zk(t)‖ ≤ Cα0e

−α0t‖z0k‖,∀t ≥ 0.
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We derive a feedback form of the controller ψk in Theorem 1.1.1 by using a classical ap-
proach: minimization of a cost function associated to the linear system (1.1.15), considered
into the dual space X = (H2(0, 1) ∩H1

0 (0, 1))∗.

Theorem 1.1.2 For all 0 < |k| ≤ S, there is a feedback control

ψk = −ν(L−2
k Rkzk)

′′′(1)

such that, once inserted into the system (1.1.15), the corresponding solution of the closed
loop system (1.1.15), satisfies

‖L−1
k zk(t)‖ ≤ Ce−γt‖L−1

k z0k‖, ∀t ≥ 0,

for some Cγk , γk > 0. Here Rk ∈ L(X,X) is a linear self-adjoint operator such as

(i) Rk : H → H,

(ii) Rk satisfies the next algebraic Riccati type equation〈
L−1
k Rkz0k, L

−1
k Akz0k

〉
+

1

2
ν2|(L−2

k Rkz0k)
′′′(1)|2 =

1

2
‖L−1

k z0k‖2,∀z0k ∈ H.

1.1.5 Feedback stabilization for the linearized system (1.1.2)

The main result of this section is

Theorem 1.1.3 The feedback controller

Ψ(t, x) = −ν
∑

0<|k|≤S

(L−2
k RkLkvk(t))

′′′(1)eikx, (1.1.20)

where

vk(t, y) =

∫ 2π

0

v(t, x, y)e−ikxdx, 0 < |k| ≤ S,

once inserted into equation (1.1.2), the correponding solution to the closed-loop system
(1.1.2) satisfies

‖(u(t), v(t))‖2 ≤ Cαe
−αt‖(u0, v0)‖2, t ≥ 0,

for some Cα, α > 0.

1.2 Tangential feedback stabilization of periodic fluids

in a two-dimensional channel

We consider again the Navier-Stokes equations in a two-dimensional channel, but now with
the boundary control acting to the tangential component of the velocity field, on the upper
wall. 

ut − ν∆u+ uux + vvy = px, x ∈ R, y ∈ (0, 1),
vt − ν∆v + uvx + vvy = py, x ∈ R, y ∈ (0, 1),
ux + vy = 0,
u(t, x, 0) = 0, u(t, x, 1) = Ψ(t, x), v(t, x, 0) = v(t, x, 1) = 0,
u(t, x+ 2π, y) = u(t, x, y), v(t, x+ 2π, y) = v(t, x, y),
p(t, x+ 2π, y) = p(t, x, y), ∀t ≥ 0,∀x ∈ R,∀y ∈ (0, 1).

(1.2.1)
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Again, the effort is to stabilize the Poiseuille profile, from the previous section. Thus, as
before, we are lead to the study of the null stabilization of the system

ut − ν∆u+ uxU
e + vU e

y + uux + vuy = px, x ∈ R, y ∈ (0, 1),
vt − ν∆v + vxU

e + uvx + vvy = py, x ∈ R, y ∈ (0, 1),
ux + vy = 0,
u(t, x, 0) = 0, u(t, x, 1) = Ψ(t, x), v(t, x, 0) = v(t, x, 1) = 0,
u(t, x+ 2π, y) = u(t, x, y), v(t, x+ 2π, y) = v(t, x, y),
p(t, x+ 2π, y) = p(t, x, y), ∀t ≥ 0, ∀x ∈ R, ∀y ∈ (0, 1),

(1.2.2)

with its linearized given by

ut − ν∆u+ uxU
e + vU e

y = px,
vt − ν∆v + vxU

e = py,
ux + vy = 0,
u(t, x, 0) = 0, u(t, x, 1) = Ψ(t, x), v(t, x, 0) = v(t, x, 1) = 0,
u(t, x+ 2π, y) = u(t, x, y), v(t, x+ 2π, y) = v(t, x, y),
p(t, x+ 2π, y) = p(t, x, y), ∀t ≥ 0,∀x ∈ R,∀y ∈ (0, 1).

(1.2.3)

Arguing as in the first section, we obtain the next stabilization result for the linearized
system (1.2.3)

Theorem 1.2.1 The feedback controller

Ψ(t, x) = −ν
∑

0<|k|≤S

1

ik
(L−2

k RkLkvk(t))
′′(1)eikx, (1.2.4)

where

vk(t, y) =

∫ 2π

0

v(t, x, y)e−ikxdx, 0 < |k| ≤ S

once inserted into the system (1.2.3), the corresponding solution to the closed-loop system
(1.2.3) satisfies the exponential decay

‖(u(t), v(t))‖2 ≤ Cβe
−βt‖(u0, v0)‖2, t ≥ 0,

for some Cβ, β > 0.

1.2.1 Local feedback stabilization for the full nonlinear Navier-
Stokes system (1.2.2)

Because of the tangential conditions, we are able in this case to prove also the local stabi-
lization of the nonlinear system (1.2.2), using the fixed point method developed by Barbu
and Triggiani [13].

Theorem 1.2.2 Let W := D(A
1
4 ) and the neighbourhood of zero

Uρ :=
{

(u0, v0) ∈ W ; ‖(u0, v0)‖W ≤ ρ
}
.
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The feedback controller

Ψ(t, x) = −ν
∑

0<|k|≤S

1

ik
(L−2

k RkLkvk(t))
′′(1)eikx,

once inserted into the system (1.2.2) implies the existence of a sufficiently small ρ > 0 such
that for all initial data (u0, v0) ∈ Uρ there exists a unique solution

(u, v) ∈ C([0,∞);W ) ∩ L2(0,∞;Z),

of the closed-loop systema (1.2.2), which satisfies

‖(u(t), v(t))‖W ≤Me−ωt‖(u0, v0)‖W ,∀t > 0,

where Z := D(A
3
4 ). A is the Stokes operator

A = −P∆, D(A) = H2(Q) ∩H1
0 (Q) ∩H,

where P is the Leray projector.

1.3 Normal feedback stabilization of the periodic flows

in a three-dimensional channel

The 2-D results presented above can be extended straightforward to the three-dimensional
case. These results are obtained by the author in [67].

10



1.3.1 Presenting of the problem

The Navier-Stokes equations in a three-dimensional channel are given by

ut − ν∆u+ u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

= − ∂p
∂x
,

vt − ν∆v + u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

= −∂p
∂y
,

wt − ν∆w + u∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

= −∂p
∂z
,

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0, x, z ∈ R, y ∈ (0, 1), t ≥ 0,

u(t, x+ 2π, y, z + 2π) = u(t, x, y, z),

v(t, x+ 2π, y, z + 2π) = v(t, x, y, z),

w(t, x+ 2π, y, z + 2π) = w(t, x, y, z),

p(t, x+ 2π, y, z + 2π) = p(t, x, y, z),

u(t, x, 0, z) = u(t, x, 1, z) = 0,

v(t, x, 0, z) = 0, v(t, x, 1, z) = Ψ(t, x, z),

w(t, x, 0, z) = w(t, x, 1, z) = 0,

∀x, z ∈ R, y ∈ (0, 1), t ≥ 0.

(1.3.1)

Again the effort is to stabilize the parabolic Poiseuille profile

U e = − a

2ν
(y2 − y), V e ≡ 0, W e ≡ 0, y ∈ [0, 1]. (1.3.2)

Decomposing the linearized system of (1.3.1), around the steady-state solution, in
Fourier modes, reducing the pressure and using the divergence free condition we obtain

[v′′kl−(k2 + l2)vkl]t − νv′′′′kl + [2ν(k2 + l2) + ikU e]v′′kl
− [ν(k2 + l2)2 + ik(k2 + l2)U e + ik(U e)′′]vkl = 0,

t ≥ 0, y ∈ (0, 1),
v′kl(0) = v′kl(1) = 0, vkl(0) = 0, vkl(1) = ψkl(t).

(1.3.3)

We immediately notice the similarities between this system and (1.1.4). Therefore, arguing
as before and introducing the operators Lkl : D(Lkl) ⊂ H → H, Fkl : D(Fkl) ⊂ H → H
and Akl : D(Akl) ⊂ H → H, defined as

Lklv := −v′′ + (k2 + l2)v,D(Lkl) = H1
0 (0, 1) ∩H2(0, 1), (1.3.4)

Fklv := νv′′′′ − (2ν(k2 + l2) + ikU e)v′′ + (ν(k2 + l2)2 + ik(k2 + l2)U e + ik(U e)′′)v, (1.3.5)
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D(Fkl) = H4(0, 1) ∩H2
0 (0, 1),

Akl := FklL
−1
kl , D(Akl) =

{
v ∈ H : L−1

kl v ∈ D(Fkl)
}
, (1.3.6)

respectively, we get

Theorem 1.3.1 The feedback controler

Ψ(t, x, z) =
∑
k,l∈Z

ψkl(t)e
ikxeilz, (1.3.7)

where

ψkl(t) =


−ν(L−2

k RkLkvk0(t))′′′(1) for 0 < |k| ≤ S, l = 0,
0 for |k| > S, l = 0,
0 for k = 0, l ∈ Z,

−ν(L−2
kl RklLklvkl(t))

′′′(1) for k, l ∈ Z∗ şi
√
k2 + l2 ≤ S,

0 for k, l ∈ Z∗ şi
√
k2 + l2 > S,

(1.3.8)

once inserted into the linearized system of (1.3.1), yields the exponential decay for the
corresponding solution

‖(u(t), v(t), w(t))‖2 ≤ Cγe
−γt‖(u0, v0, w0)‖2, t ≥ 0,

for some Cγ, γ > 0.

1.4 Normal feedback stabilization of a MHD flow in

a two-dimensional and three-dimensional channel

In this last section, we treat the case when the fluid is electrically conductive and an
external magnetic field is applied transversal to the channel. These results are obtained
by the author in [70].

1.4.1 Main results

The governing equations of the dynamics are the MHD equations, a combination between
the Navier-Stokes equations and Maxwell equations, i.e.,

∂v

∂t
− ν∆v + (v · ∇)v−N (j×B) = −∇p, (1.4.1)

and
∂B

∂t
= ∇× (v×B) +

1

Rm
∆B, (1.4.2)

where v is the velocity field, B is the magnetic field, j is the current density and p is the
pressure ν,Rm and N are the viscosity coefficient, the magnetic Reynolds number and the
Stuart number, respectively. We shall consider the fluid with low values of the magnetic

12



Reynolds numeber. It tourns out that the MHD equations (1.4.1)-(1.4.2) transform into
the so-called simplified MDH equations, given by

ut − ν∆u+Nu+ uux + vuy = −px,
vt − ν∆v + uvx + vvy = −py,
ux + vy = 0,
t ≥ 0, x ∈ R, y ∈ (0, 1),

(1.4.3)

in 2-D, 

Ut − ν∆U + UUx + V Uy +WUz −Nφz +NU = −Px,
Vt − ν∆V + UVx + V Vy +WVz = −Py
Wt − ν∆W + UWx + VWy +WWz +Nφx +NW = −Pz,
∆φ = Wx − Uz,
Ux + Vy +Wz = 0,
t ≥ 0, x, z ∈ R, y ∈ (0, 1),

(1.4.4)

in 3-D, respectively.
The steady-state solutions which are stabilized are the Hartmann-Poiseuille profiles,

given by

U e =
sinh

(√
1
ν
N (1− y)

)
− sinh

√
1
ν
N + sinh

(√
1
ν
N y
)

2 sinh
(√

1
ν
N /2

)
− sinh

√
1
ν
N

, V e ≡ 0, (1.4.5)

in 2-D,

U e =
sinh

(√
1
ν
N (1− y)

)
− sinh

√
1
ν
N + sinh

(√
1
ν
N y
)

2 sinh
(√

1
ν
N /2

)
− sinh

√
1
ν
N

, V e ≡ 0, W e ≡ 0, (1.4.6)

in 3-D, respectively.
Let us notice the clear similarities between the SMHD equations and the ones studied in

the previous sections. One might suspect that, arguing as before, one can obtain a normal
feedback stabilization result as before. This is indeed, making use of the Fourier functional
setting, one can argue as before in order to obtain the wanted results.
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Chapter 2

Internal stabilization of
Navier-Stokes equations with exact
controllability on spaces with finite
co-dimensiona

In this chapter, we design an internal stabilizing feedback controller for the Navier-Stokes
equations. Besides, we show that this controller steers the initial data into the space of
stable modes, in finite time. These results were obtained by the author in [21], jointly with
V. Barbu.

2.1 Presentation of the problem

The Navier-Stokes equations with null boundary conditions are

∂v
∂t
− ν∆v + (v · ∇)v = f e +∇p in (0,∞)×O,

∇ · v = 0 in (0,∞)×O,

v = 0 on (0,∞)× ∂O,

v(0) = vo in O,

(2.1.1)

where O ⊂ Rd, d = 2, 3, is an open domain with smooth boundary ∂O.
We consider a steady-state solution ve = ve(x) of N-S equations, i.e.,

−ν∆ve + (ve · ∇)ve = f e +∇pe ı̂n O,

∇ · ve = 0 ı̂n O; ve = 0 pe ∂O.
(2.1.2)
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Let O0 ⊂ O, we associate to the system (2.1.1) the next internal control problem

∂v
∂t
− ν∆v + (v · ∇)v = f e +∇p+mΨ in (0,∞)×O,

∇ · v = 0 in (0,∞)×O,

v = 0 on (0,∞)× ∂O,

v(0) = vo in O,

(2.1.3)

where m is the characterisitc function of the set O0 and Ψ is the control.

2.2 Main results

We set
Hπ :=

{
v ∈

(
L2(O)

)d
: ∇ · v = 0 in O, v · n = 0 on ∂O

}
, (2.2.1)

where n is the unit outward normal to the boundary ∂O. The Leray projector is defined
as P : (L2(O))

d → Hπ. We introduce also

A := −P∆, D(A) =
(
H1

0 (O) ∩H2(O)
)d ∩Hπ,

Av := νAv + P ((v · ∇)ve + (ve · ∇)v), D(A) = D(A),

and
Bv := P ((v · ∇)v), v ∈ D(A).

Thus, redefining v := P (v− ve), we rewrite the system (2.1.3) as{
d
dt

v +Av +Bv = P (mΨ) in (0,∞)×O,
v(0) = vo := vo − ve,

(2.2.2)

since by applying the Leray projector we reduce the pressure.
Next, we introduce the feedback controlle

Ψ(t) := −η
N∑
j=1

sign
(〈
PNv(t), φ∗j

〉)
PNΦj, (2.2.3)

where η ∈ R+, sign is the multivalued function on C, defined as

sign(z) :=

{ z
|z| , if z 6= 0,

{w ∈ C : |w| ≤ 1} , if z = 0,
(2.2.4)

and Φj ∈ Hπ are defined as

Φj :=
N∑
k=1

αjkφ
∗
k, j = 1, ..., N,
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with
N∑
k=1

αik
〈
φ∗k, φ

∗
j

〉
0

= δij, i, j = 1, ..., N. (2.2.5)

Here

〈φ, ψ〉0 :=

∫
O
mφψdξ, ∀φ, ψ ∈ (L2(O))d.

We have the next result of stabilization for the N-S system

Theorem 2.2.1 Let T, ρ > 0 sufficiently small. For all vo ∈ W , such tha ‖vo‖W ≤ ρ, the
problem 

dv

dt
+Av + η

N∑
j=1

sign(
〈
PNv, φ∗j

〉
)PNm(Φj) +Bv = 0, t ≥ 0,

v(0) = vo,

(2.2.6)

is well-posed on W with unique solution

v ∈ C([0,∞);W ) ∩ L2(0,∞;Z),

provided that η is such that

η ≥ max

{
<λj

(
k‖φ∗j‖+ ρ

)
e<λjT − 1

; j = 1, ..., N

}
. (2.2.7)

Besides, these solutions satisfy

PNv(t) = 0,∀t ≥ T, (2.2.8)

and
‖v(t)‖ ≤ Ce−βt‖v0‖, ∀t ≥ T. (2.2.9)

Here
W := (H

1
2
−ε(O))d ∩Hπ and Z := (H

3
2
−ε(O))d ∩Hπ

for d = 2,
W := (H

1
2

+ε(O))d ∩Hπ and Z := (H
3
2

+ε(O))d ∩Hπ

for d = 3.
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Chapter 3

Internal stabilization of a finite set of
stedy-state solutions to the
Na-vier-Stokes equations

In this chapter, we shall design a control which stabilizes, not one steady-state solution,
but a finte set of steady-state solutions to the N-S system. The results presented below
were obtained by the author in [69].

3.1 Main results

Remember the controlled N-S equations with zero boundary conditions

vt(x, t)− ν∆v(x, t) + (v · ∇)v(x, t)

= m(x)Ψ(x, t) + f e(x) +∇p(x, t), in Q = O × (0,∞),

∇ · v = 0, in Q,

v = 0, on Σ = ∂O × (0,∞),

v(x, 0) = v0(x), in O.

(3.1.1)

Applying the Leray projector, these can be rewritten as

dv

dt
+ νAv +Bv = P (mu+ f e); v(0) = v0 ∈ Hπ. (3.1.2)

The main result of internal stabilization in [10], says that there exists a neighbourhood Uρ
of zero and a feedback controller which stabilzes system (3.1.2) in it. Moreover, we know
that N-S obeys the next generic property: for ”allmost all” external forces fe, the number
of stedy-state solutions is finite. Thus, let {ve1,ve2, ...,veN} the steady-state solutions. For
each vei , i = 1, ..., N , there is a feedback controller Ψi = Ψi(v− vei ), i = 1, ..., N , such that
the solution to

dv

dt
+ νAv +Bv = P (mΨi(v− vei )) + Pfe, t ≥ 0; v(0) = v0, (3.1.3)
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satisfies
|v(t)− vei | 1

2
≤ Cie

−γit|v0 − vei | 1
2
, t ≥ 0, (3.1.4)

for v0 ∈ Uρi . Here we denote by |v| 1
2

:= ‖A 1
4 v‖,∀v ∈ D(A

1
4 ).

Consider the sets

Ui =

{
v0 ∈ Hπ; |v0 − vei | 1

2
<
ρi
Ci

}
, i = 1, ..., N. (3.1.5)

and ε > 0 such that{
v; |v− vei | 1

2
< (1 + ε)ρi

}
∩
{

v; |v− vej | 1
2
< (1 + ε)ρj

}
= ∅, (3.1.6)

∀j 6= i, i, j = 1, ..., N .
Introducce the function w : R+ → [0, 1], defined as

w(r) =


1 0 ≤ r ≤ 1,
0 r ≥ 1 + ε,

netedă 1 < r < 1 + ε.

Finally, introduce χi : D(A
1
4 )→ [0, 1], as

χi(v) = w

(
|v| 1

2

ρi

)
,∀v ∈ D(A

1
4 ), i = 1, ..., N. (3.1.7)

Then, the controller

Ψ(v) :=
N∑
i=1

χi(v− vei )Ψi(v). (3.1.8)

stabilizes the finite-set of steady-state solutions vei .

Theorem 3.1.1 The feedback controller Φ, defined by (3.1.8), exponentially stabilizes ev-
ery stationary solution vei , i = 1, ..., N in the neighbourhood Ui, i = 1, ..., N . More precisely,
for all v0 ∈ Ui, i = 1, ..., N there exists a unique weak solution

v ∈ L∞(0, T ;Hπ) ∩ L2(0, T ;V ),
dv

dt
∈ L

4
3 (0, T ;V ∗),

for d = 3, and

v ∈ L∞(0, T ;Hπ) ∩ L2(0, T ;V ),
dv

dt
∈ L2(0, T ;V ∗)

for d = 2, ∀T > 0, to the closed loop system

dv

dt
+ νAv +Bv = P (m

N∑
j=1

χj(v− vej)Ψj(v)) + Pf e, t ≥ 0; v(0) = v0, (3.1.9)

whihc satisfies the exponential decay

|v(t)− vei | 1
2
≤ Cie

−γit|v0 − vei | 1
2
, t ≥ 0.
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Chapter 4

Apendix

This chapter briefly presents the main theoretical results used during the presentation.
More precisely, we remember results about compact opertors in Banach spaces, spectral
decomposition, Fredholm theorey, the extended of an operator, semigroup theory and
dynamical systems theorey.
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